
Inherent structures and Kauzmann temperature of confined liquids

A. Attili, 1 P. Gallo,1,2,* and M. Rovere1,2

1Dipartimento di Fisica, Università “Roma Tre,” Via della Vasca Navale 84, 00146 Roma, Italy
2INFM Roma Tre and Democritos National Simulation Center, Via della Vasca Navale 84, 00146 Roma, Italy

sReceived 20 December 2004; published 21 March 2005d

Calculations of the thermodynamical properties of a supercooled liquid confined in a matrix are performed
with an inherent structure analysis. The liquid entropy is computed by means of a thermodynamical integration
procedure. The contributions to the free energy of the liquid can be decoupled also in confinement in the
configurational and the vibrational parts. We show that the vibrational entropy can be calculated in the har-
monic approximation as in the bulk case. The Kauzmann temperature of the confined system is estimated from
the behavior of the configurational entropy.
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I. INTRODUCTION

It is well known that most liquids upon supercooling un-
dergo a transition to an amorphous state, where mechanical
properties typical of a solid phase combine with a micro-
scopically disordered structuref1–4g. Just below the melting
temperature the supercooled liquids manifest a slowing down
of dynamics. This behavior has been successfully interpreted
in terms of the mode coupling theorysMCTd which is able to
predict the asymptotic properties of the density correlators
upon decreasing temperature on approaching a temperature
TC f5g. This temperature marks a crossover from a region
where the exploration of the phase space of the system is
determined by structural relaxations, to a region where it is
determined by hopping processes. In the last few years the-
oretical approaches based on the analysis of the potential
energy landscapesPELd of the supercooled liquid have
driven significant progress in the study of the thermodynam-
ics of the glass transition belowTC f4,6–16g.

The phenomena related to the glass transition are yet not
well understood in the case of liquids in confined geometries
or at contact with solid surfaces although these situations are
very relevant for many technological and biological applica-
tions. It is in fact still not clear how the theoretical ap-
proaches developed for bulk supercooled liquids can be ex-
tended to describe the corresponding phenomenology when
liquids are confined.

While it has been shown that MCT works also for inter-
preting the dynamics of confined liquids in several cases
f17–21g, no studies of dynamics in confinement belowTC
have so far been performed. It is therefore very relevant to
study how the PEL and the thermodynamical properties be-
low TC are modified by the presence of confinement. Re-
cently a mean field analysis of the PEL for thin films has
shown that confinement could affect the thermodynamical
behaviour and the glass transitionf22g.

As proposed by different authorsf23,24g the behavior of a
bulk supercooled liquid is determined by the dynamics of the
system in and between the basins of the PEL. At low enough

temperature there are two separated regimes; the dynamics
on the short time scale can be described as the motion around
the local minima, while the long time dynamics is related to
the transition between different basins of energy. This sepa-
ration of regimes has been framed by Stillinger and Weber
sSWd f24g in the formalism of the inherent structuresISd.
According to their definition an IS is the configuration of
local minima of the PEL. A basin is the set of points that
maps to the same IS under a local energy minimization per-
formed by a steepest descent procedure starting from a con-
figuration equilibrated at a certain temperature. In the SW
formulation under the assumption that the basins with the
same IS energyeIS have equivalent properties in the canoni-
cal partition function, the motions between different basins
and the vibrations inside a single basin can be decoupled.
This formulation allows one to define and study a configu-
rational entropySconf. This quantity, which represents the
difference between the liquid and the disordered solid entro-
pies, plays a central role in understanding the glass transi-
tion.

In the process of cooling the configurational entropy de-
creases and eventually vanishes at a finite temperature, de-
fined as the the Kauzmann temperatureTK f25g. In the inter-
pretation of Adam, Gibbs, and Di Marziof26–28g at TK an
ideal thermodynamical transition should take place from the
supercooled liquid to an amorphous phase with a single con-
figuration f4,9,12,28–30g. The singular behavior of thermo-
dynamical quantities measured in experiments at the conven-
tional glass transition temperatureTg would be related to the
true transition occurring atTK,Tg.

It is generally found that phase transitions in confined
fluids are modified by confinement from both geometric ef-
fects and the interaction with the substrate. This is particu-
larly true when large spatial correlations are expected to take
place and finite size effects could influence the transition in a
fluid confined in a restricted environment. This would also be
the case for the glass transition atTK if it is interpreted in
terms of a second-order phase transitionf31g or in the frame-
work on the mosaic state scenariof33g.

Here we consider the case of a glass forming confined
liquid, a Lennard-Jones binary mixturesLJBMd, embedded
in a disordered array of soft spheres. Molecular dynamics
simulations have been performed for this system upon cool-
ing and a numerical test of MCT properties has been carried
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out. The mixture follows in this confining environment also,
as in the bulk, MCT predictions very wellf17,18g. Nonethe-
less important differences due to confinement are found. In
particular the range of validity of the MCT predictions suf-
fers a reduction of 60% with respect to the bulk. We found a
crossover temperatureTC=0.356sin Lennard-Jones unitsd to
be compared with the bulk valueTC=0.435 sin Lennard-
Jones unitsd f33g and therefore we observed a reduction of
circa 20% of TC in going from the bulk to the confined
LJBM.

We performed in this paper an IS analysis to evaluate the
IS distributions, the temperature dependence of the configu-
rational entropy, and finally the Kauzmann temperature of
the confined LJBM to be compared with the corresponding
values for the LJBM in the bulk phasef7,12g. The paper
develops as follows. In the next section we report computa-
tional details. The third section is devoted to the calculation
of the IS for the confined LJBM. In the fourth section we
evaluate the configurational entropy and the Kauzmann tem-
perature. The last section is devoted to the conclusions.

II. COMPUTER SIMULATION OF THE CONFINED
LIQUID UPON SUPERCOOLING

We studied the LJBM proposed in Ref.f33g embedded in
a rigid disordered array of 16 soft spheres. The liquid binary
mixture is composed by 800 particles of typeA and 200
particles of typeB. The parameters of the Lennard-Jones
potential areeAA=1, sAA=1, eBB=0.5, sBB=0.88, eAB=1.5,
andsAB=0.8. In the following, LJ units will be used. TheA
andB particles interact with the soft spheres with a potential
Vsrd=ess / rd12 where eSA=0.32, sSA=3, eSB=0.22, sSB

=2.94.
Molecular dynamicssMDd simulations have been per-

formed in theNVTensemble along an isochoric path at vari-
ous temperatures upon cooling. The box length is fixed to
L=12.6. In previous work we already investigated the sys-
tem in the range of temperature fromT=5.0 to 0.37 and
further MD simulation details are reported in Refs.f17,18g.

Starting from the equilibrated configurations at the tem-
peratures T=5,2,0.8,0.6,0.55,0.5,0.475,45,0.425,0.38,
we performed new simulations for each temperature in order
to obtain a number of equally spaced configurations and cal-
culate the corresponding IS for each temperature.

The ISs have been obtained by the conjugate gradient
minimization procedure described in the literature and
adapted to our confined system. For each temperature 1000
configurations have been minimized. The Hessian matrix has
been diagonalized at each IS to calculate the eigenfrequen-
cies.

III. INHERENT STRUCTURE ANALYSIS

In the SW formulation of IS the canonical partition func-
tion can be written as follows:

ZNsTd =E deISVseISdexph− feIS + fsT,eISdg/kBTj s1d

whereVseISd is the number of distinct basins with energyeIS

and fsT,eISd is the free energy of the system restricted to a

single basin with energyeIS. The configurational entropy
Sconf can be defined asSconf=kB lnfVseISdg. The energies of
the IS are distributed with a probability given by

PseIS,Td =
exph− feIS + fsT,eISd − TSconfseISdg/kBTj

ZNsTd
. s2d

The configurational entropy can be defined also as the
difference between the liquid entropy and the entropy of the
disordered solidsDSd

Sconf = Sliquid − SDS. s3d

From the quenches performed at each temperature we cal-
culate the distribution functionsPseIS,Td of the IS. These are
shown in Fig. 1 together with Gaussian best fits. The Gauss-
ian curves appear to reproduce sufficiently well the distribu-
tion functions. For the lowest temperatures the curves are
narrower and more peaked around the average value.

We can now look at the behavior of the configurational
entropy by considering Eq.s2d, from which we obtain

lnfPseIS,Tdg + eIS/kBT

= SconfseISd/kB − fsT,eISd/kBT − lnfZNsTdg. s4d

The left-hand side of this equation can be calculated from the
distribution functions of Fig. 1 to obtain a new set of curves.
By plotting all these curves as function ofeIS we see that
they can be superimposed by subtracting a temperature de-
pendent term as shown in Fig. 2 forT,0.80. Looking at the
right hand side of Eq.s4d this result implies that the basin
free energyfsT,eISd is almost independent of the IS energy.
The master curve represents, apart from an unknown tem-
perature dependent term, the configurational entropy.

Since the basin free energy is approximately independent
of eIS for T,0.8 in the confined liquid, the partition function
defined in Eq.s1d can be separated as

FIG. 1. Distribution functionsPseIS,Td. Lower temperatures are
on the left. The functions are omitted for temperaturesT=0.50 and
0.55 since they are almost superimposed on the ones atT=0.475
and 0.60, respectively.
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ZNsTd < expf− fsT,eISd/kBTg E deISVseISdexps− eIS/kBTd.

s5d

The confined liquid at low enough temperature can be as-
sumed to be composed of an inherent structure subsystem in
thermal equilibrium with the vibrational subsystem. The IS
represents the long time dynamics of the system due to tran-
sitions between the different basins of energy, whose degen-
eracy is counted byVseISd=expsSconf/kBTd. The vibrational
spectrum is related to the oscillations close to the minimum
of the single basin. It can be obtained by diagonalizing the
Hessian matrix after a conjugate gradient minimization start-
ing from equivalent state pointsf34g.

In Fig. 3 we report the comparison of the density of state
sDOSd of the vibrational spectrum of the confined and the
bulk LJBM obtained with the same method. We observe that
the confinement does not induce large changes in either the
shape on the spectral range of the eigenfrequencies. For the
bulk LJBM it has been also shown that the basin free energy
can be approximated by the harmonic vibrational contribu-
tion f7g. We will come back later to this point.

IV. CONFIGURATIONAL ENTROPY AND KAUZMANN
TEMPERATURE

The behavior of the configurational entropy has been de-
termined from Eq.s4d and shown in Fig. 2 but the calculation
of the Kauzmann temperature requires the absolute value of
Sconf.

A thermodynamical integration procedure allows one to
evaluate the full entropy of the liquid including the tempera-
ture dependent integration constant which appears in Eq.s4d.
Starting from a state reference point at temperatureTr at the
given volumeV of the simulation box, the entropyStot can be
computed as

StotsT,Vd = SrefsTr,Vd +E
Tr

T S ]UsT8d
]T8

D
V
dT8 s6d

whereUsTd is the internal energy calculated in the simula-
tion along the isochoric path. As reference point we assume
Tr =5.0. The reference entropySrefsTr ,Vd is derived from the
correspondingSbulksTr ,Vd of the bulk system at the same
temperatureTr and volumeV by adding the contribution of

FIG. 2. Entropy per particle calculated from the distribution
functions of the inherent structure energy according to Eq.s4d at the
different temperaturesT=0.38,0.425,0.45,0.475,0.50,0.55,0.60,
0.80,2.0,5.0. The unknown temperature dependent term is obtained
by maximizing the overlap between the curves. ForT.0.80 the
curves deviate from the master curve.

FIG. 3. Density of states of the confined liquid compared with
the DOS of the bulk liquid. The DOSs are obtained by quenching
the systems fromT=0.38 for the confined mixture and fromT
=0.51 for the bulk. Both systems were equilibrated at the same
pressure before the quench; the temperatures are different due to the
fact thatTC is lower for the confined systemf34g.

FIG. 4. Total entropy of the confined system as obtained from
the thermodynamical integrationsfull lined as a function ofT. The
dashed curve is the entropySliq obtained after subtracting the con-
tribution due toWconfin; see Eq.s9d. In the figure are also reported
the vibrational entropySHDS sdotted lined calculated in the harmonic
approximation and the quantitySHDS−3 lnsT/T0d sbroken line with
filled squaresd fitted with the polynomial 3.704+0.1555T
−0.0835T2. In the insetSliq andSHDS are reported on a larger scale
to better show the crossing point corresponding to the Kauzmann
temperatureTK. All entropies are per particle and in units ofkB.
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the work needed to include the soft spheres by keeping the
volume constant:

SrefsTr,Vd = Sref
bulksTr,Vd +

1

T
fUsTr,Vd − UbulksTr,Vdg. s7d

SbulksTr ,Vd is obtained as follows:

Sref
bulksTr,Vd = Sideal

bulk sTr,Vd +
UbulksTr,Vd

Tr
+ ÈV Pexc

bulk

Tr
dV8

s8d

wherePexc
bulk is the excess pressure of the bulk andSideal

bulk sTr ,Vd
is the entropy of the ideal two-component gas.

The result is the topmost curve shown in Fig. 4. Below
the lowest investigated temperatureT=0.38 the curve is ex-
trapolated by an accurate polynomial fit.

At variance with the bulk in our case, the effective density
of the confined liquid is not constant, since the free volume
accessible to theA andB particles changes with the tempera-
ture due to the soft sphere interaction potentialf17,18,34g.
The calculation ofStot has been performed along an isochoric
path and the internal energy of the confined liquid used in
Eq. s6d contains also a contributionWconfinsTd due to the
work done to change the effective density of the liquid inside
the simulation box at constant volume. This contribution has
to be subtracted to extract the entropy of the liquid from
which the the configurational entropy can be obtained:

SliqsT,Vd = StotsT,Vd −E
Tr

T 1

T8
S ]Wconfin

]T8
D

V
dT8. s9d

This integral can be calculated by referring to a correspond-
ing bulk system simulated at the same pressures and tem-
peratures of the confined mixture, by considering

]Wconfin

]T
=

]Wconfin

]Vliq

]Vliq

]T
s10d

where Vliq is the effective volume of the confined liquid.
VliqsTd can be derived by comparison with an equivalent bulk
at the same pressure. The thermodynamical path followed by
the equivalent bulk and the corresponding densities will be
published in a separate paperf34g. The result forSliq is also
reported in Fig. 4. We note thatSliq of the confined system
when compared to that of the bulkf7,12g assumes higher
values for high temperatures but approaches the zero value at
approximatively the same temperature as in the bulk. There-
fore the enhancement of entropy due to the additional disor-
der induced by the presence of the soft spheres seems to
become less marked as the temperature is decreased.

Assuming the harmonic approximation to be valid also for
our confined LJBM, from the eigenfrequencies obtained
from the IS we can evaluate the entropy of the harmonic
disordered solidsHDSd with the formula

SHDS= o
i=1

3N−3

f1 − lnsb"vidg. s11d

The result is also reported in Fig. 4. In the same figure is
shown the quantitySHDS/NkB−3 lnsT/T0d, whereT0=1 has

been chosen as a reference temperature. It has a very weakT
dependence well fitted by a quadratic polynomial. This
shows that almost all theT dependence of the entropySHDS is
contained in the term independent of the frequency distribu-
tion.

With the assumptions done for the vibrational spectrum of
the basins we can identify theSHDS with the entropy of the
disordered solidSDS. In this way the configurational entropy
Sconf is obtained from the difference

Sconf < Sliq − SHDS. s12d

From Fig. 4, as best evident in the enlargement, we find that
Sconf=0 at the temperatureT=0.292±0.02 which can be
identified as the Kauzmann temperature of the confined
LJBM.

V. DISCUSSION AND CONCLUSIONS

We have shown that for a LJBM the IS analysis can be
performed also in confinement. The absolute value of the
entropy of the confined liquid can be obtained by thermody-
namical integration by means of a procedure where one re-
fers to an equivalent bulk system at the same temperature
and volume as the confined liquid for including the ideal
terms. The result must be corrected for the work done to
change the density of the confined liquid keeping constant
the volume of the simulation cell. The correction is calcu-
lated by comparison with a bulk liquid at the same pressure
as the confined one. The combination of the IS analysis and
the thermodynamical integration technique allows one to de-
termine the Kauzmann temperatureTK of the system defined
as the temperature at which the configurational entropy van-
ishes.

With the entropy of the disordered solid calculated in the
harmonic approximation as in the bulk, we found thatTK
=0.292 for the confined system to be compared withTK
=0.297 for the bulk. We observe therefore only a slight de-
crease ofTK upon confinement while a much more marked
decrease is instead detected for the MCT crossover tempera-
ture TC. We obtained in factTC=0.356 in confinement
againstTC=0.435 in the bulkf18,34g.

These results seem to confirm the connection between dy-
namics and the thermodynamic energy landscape sampling
as a function of temperaturef4g. In the region close toTC the
system is still at relatively high temperature. The ergodicity
is assured by structural relaxations that require cooperative
rearrangement of large portions of the liquid. This corre-
sponds in the PEL picture to a system that has sufficient
kinetic energy to sample a large portion of the PEL. In this
region the modification to the PEL induced by the presence
of the soft sphere matrix exerts a strong influence on the
particle motions modifying substantially not only theTC but
also the critical exponents of the theoryf17,18g. On ap-
proaching the Kauzmann temperature the system becomes
trapped in a single minimum. In this situation only a small
fraction of particles explores the configuration regions occu-
pied by the soft sphere potential.

The confining matrix used in the present simulation mim-
ics the connected pore structure of systems with high poros-
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ity like silica xerogels. It appears that the confinement in this
kind of system does not shift the thermodynamical liquid-
glass transition but changes the way in which the configura-
tional entropy approaches the limiting Kauzmann tempera-
ture. Further investigations will be necessary to understand
sid if the different behavior ofSconf implies modifications of
the PEL, andsii d if and how changes of porosity and/or size

of the confining spheres could modify the Kauzmann tem-
perature.
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